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Lymphatic System

Scientific Context: What is

lymphoma?
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Scientific Context: Anatomy of a Lymph Node
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Scientific Context: Three Classes of Lymphoma

Chronic Lymphocytic Leukemia (CLL)
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Scientific Context: Three Classes of Lymphoma

Chronic Lymphocytic
Leukemia (CLL)

Mantle Cell Lymphoma (MCL) Follicular Lymphoma (FL)

Biopsies stained with hematoxylin and Eosin — Lymphocytes appear blue



Motivation

Challenge:

Lymphoma classification is inaccessible, unstandardized, and time
sensitive- requires efficient and consistent classification to assign most
promising treatment options.

Solution:

Develop a convolution neural network to properly classify 3 types of
lymphoma in order to speed up and standardize the diagnostic process,
making diagnostics tools more accessible.



The Image Data

Format: .tif

Count: 374

Classes 3

Dimensions: 1040x1388 pixels
Channels: 3 (rgb)

CLL/sj-03-852-R2_001 tif
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Why use a convolutional neural network?

HIDDEN

e Useful for processing images (as

OUTPUT opposed to data sets)

with large sample of data

I I
I I
I |
I |
| o Robust and computationally efficient :
| |
| : . !
, o Does not require human supervision |

|

Some common architectures: LeNet-5 (1998), AlexNet (2012), VGG-16 (2014)



Overview of Analysis Process

Plot confusion
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Concatenate Image Files Into Array Construct Image Types Array

Integer One-Hot Encoding

lymphoma imgs > 0 =) [100] lymphoma_types
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Generate 32 x 32 Pixel Patches Apply Image Augmentations
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https://www.degreesymbol.net/

Divide Data Into Subsets Preprocess Data

Training: 80% ; Validation: 10% ; Test: 10%

| Prepare Data for CNN
Compile Data Inspect Results
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Optimize Data Train Troubleshoot
CNN 13



Building Blocks of a CNN
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Confusion Matrix
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CNN Output

72/150

496ms/step 1.4068 accuracy: 0. val loss: 1.0313 val_accuracy:
73/150

577ms/step 1.4446 accuracy: 0. val_loss: 1.0227 val_accuracy:
74/150

595ms/step 1.3753 accuracy: 0. val loss: 1.0302 val_accuracy:
75/150

492ms/step 1.3943 accuracy: 0. val loss: 1.0244 val_accuracy:
76/150

488ms/step 1.3497 accuracy: 0. val loss: 1.0122 val_accuracy:
77/150

492ms/step 1.3699 accuracy: 0. val loss: 0.9895 val_accuracy:
78/150

490ms/step 1.4060 accuracy: 0. val loss: 1.0254 val_accuracy:
79/150

493ms/step 1.3207 accuracy: 0. val loss: 1.0096 val_accuracy:
80/150

491ms/step 1.3166 accuracy: 0. val loss: 0.9780 val_accuracy:

Compile Data Prepare Data for CNN Inspect Results

Optimize Data Train CNN

Troubleshoot




Extraterrestrial Confounding Cat Architecture
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Convolution

Results and Discussion

CNN Architectures

Max Pooling Average Pooling

18



True label

First CNN implementation: goes wrong

CLL 1

FL1

MCL 1

e Architecture adapted from morphological
; 3 classification of SDSS galoxies activity
0 0 e A lot of changes, same performance
o &

Predicted label

@ conv2D ' Activation ﬂ Dxopout . MaxPooling2D ' Flatten @ Dense 19



Solution: AlexNet CNN architecture

It consists of:
e S convolutional layers
e« 3 max pooling layers
e 2 normalization leyers
o 2 fully connected layers - |

P cowzn [ satchrormalization [ waxwoolingzo @ riatten @ vense () oropout
e 1softmax layer




Extraterrestrial Confounding Cat
Architecture

o Slightly different of the original AlexNet
architecture

@ conv2D ' BatchNoxmalization @ MaxPooling2D . Flatten . Dense @ Dropout

Layer
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Results and Discussion (continued)

Learning curves - evaluate model performance

Confusion matrix - performance measurement for classification algorithms

22



accuracy
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Simplest case: 1 patch per image
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True label

Confusion matrices for test and training set

e Predictions for test set not

very accurate

CLL

FL-

MCL 1
N Q

Predicted label

é\(>'

True label

e Sanity check: predictions for
training set

CLL1
FL-
MCL
N Q o

Predicted label

24



True label

Is the model performance bad, or are other factors in play?

e Predictions for test set not
very accurate
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Increase sample size: 10 patch per image
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True label

Confusion matrices for test and training set

Predictions for test set have

not improved
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Increase soample size: 20 patch per image
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5980 740 760

model accuracy

0.8 1

accuracy

03 k T T T T T T
0 20 40 60 80 100
epoch

Accuracy curve over 100 epochs

Validation accuracy curve shows slight
improvement
Training accuracy curve continues to rise

model accuracy

2.25 1

——  losS
val loss

2.00 1

175 A1

150 -

loss

125 A1

100

0.75 - e \\”\\‘\\
0.50 1

epoch

Loss curve over 100 epochs 28



True label

Confusion matrices for test and training set

e Predictions for test set have
not improved
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Tests with other parameters

Increasing sample size by x20 — no significant improvement
Decreasing the complexity of CNN — different architectures
Dropout parameter — 0.1 - 0.5

Image augmentation in training set — rotation - horizontal and vertical
flipping - zooming

Activation function, optimizer, kernels, learning rate

Increasing batch size - made things worse

30



Optimization improvements for classification

e Better computing
power - increase
training sample
without memory
issues

e Implement AlexNet
with transfer
learning

e Segmentation/
feature extraction

TRANSFER LEARNING

@

DATASET 1 MACHINE LEARNING MODEL 1

KNOWLEDGE

DATASET 2 MACHINE LEARNING MODEL 2
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Connections to Astronomy

The techniques implemented in this work can also be used in astronomy!

e CNNs: very useful for image processing; applicable for limiting the necessity of
visual inspections in photometric works such as Lyman Alpha studies.

e Dato augmentation: useful for those cases in which we do not have many

observations (example: rotating galaxies with particular features that we want to
study).

e Nowadays surveys can serve as training samples.

e Catalogs can be used as seeds for transfer learning techniques (e.g. JWST)

...and to other fields! 32



sSummary

Created CNN using TensorFlow and Keras in order to classify 3
different types of Lymphoma

Improved results significantly from initial methods, but ultimately
could achieve better results with less limitations in RAM related to
the homogeneity in images

Gained an exciting experience of working out of area

Learned many valuoble methods in deep learning, data
augmentation, and image processing, which we hope to apply to
our research in astronomy



Thank you for your attention!

Room 2 Zoom Meeting

Elisa Tau
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NOTES

Started to segmentation

Slide of failed approaches

Explain Alexnet and our architecture
Plots

Talk about one hot encoder

Image normalization

What did work

Diagram of steps in analysis - arrays, preprocessing, training etc (Flow
chart)

Why using neural networks

Future works - application to astronomy
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