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1. Introduce the problem (Keppler Analogy) (Isabella) 
2. Introduce Symbolic Regression (Rosalie)

a. What is it? Why should it be used?
b. What is genetic programming?

3. What is our goal? Try different packages. Can we recreate this equation easily? Introduce data set 
(Federico)

5. What about AI Feynman, they claim to be great and work easily. Not really… there are many 
problems, Isabella can rant about AI Feynman here.

6. What if we try Deap algorithm? What do we get? Does it take a long time? Is it frustrating.
a. Graph representation of function
b. Predicted vs actual redshift graph

7. Gplearn: Easy to use right away, but not very easy to control some parameters of the learning
a. Can run the same algorithm and get completely different answers, don’t use the same variables
b. How do different answers compare? Can we even trust these equations?

8. Pysr: Great control over complexity and other aspects of the learning
9. Conclusion: Pros vs Cons of packages, key lessons (Felipe)

Outline



After 4 years and over 40 
failed attempts to fit Mars 
data to ovoid shapes,

Johannes Kepler 
discovered that 
Mars orbit was an 
ellipse.

In 1601



This is an example of 
symbolic regression 
i.e. discovering a 
symbolic expression to 
match a given dataset.



What is Symbolic Regression?
● Regression program that searches for best expression and the optimal 

coefficients simultaneously
● Choose base set of functions/operators and fitness metric
● Useful when you:

○ Want transparent investigation of correlations in a data set
○ Want to discover new physical laws empirically (and have indefinite 

computing time)

What is Genetic Programming?
● Computational design concept that takes inspiration from biological 

evolution.
● Start with random population

○ Random mutation and combination of two individuals (breeding)
○ Fittest individuals are the base for next generation

● Increased complexity without improvement is penalized



Goal
● Use Symbolic Regression to find relationship between redshift and 

magnitudes

● Use 4 different packages that include Logistic Regression
○ Investigate their differences.
○ Does one of them work best? 

● What kind of equations do we get? Are they interpretable?



The Data
● To explore logistic regression, we 

used a dataset of over 4000 
objects and their known 
magnitude and redshift

● A known paper used logistic 
regression to find such a 
relationship, can we recreate it?

Target!



AI Feynman
Silviu-Marian Udrescu and Max Tegmark

Symbolic regression algorithm that 
combines neural network fitting with 
a suite of physics-inspired 
techniques. 

From 100 equations 
of the Feynman 

Lectures it discovers 
all of them, while 
other commercial 

software only 
discovers 71

AI Feynman: A physics-inspired method for symbolic regression, Silviu-Marian 

Udrescu and Max Tegmark, Science Advances, American Association for the 

Advancement of Science Vol. 6 Nº6, 2020.

Eureqa



How does 
it work?
● Dimensional 

Analysis
● Polynomial Fit
● Neural Network

import aifeynman

aifeynman.run_aifeynman("./path/", 

"data.txt" ,  BF_try_time , 

BF_ops_file_type, polyfit_deg=3, 

NN_epochs=500, vars_name, 

test_percentage )

Number of 
epochs for the 
training

Seconds for 
each brute 

force call

File containing the 
symbols to be used

“19ops.txt” “14ops.txt”
“10ops.txt” “7ops.txt”

Data has to be 
imported as .txt

¿Simple?



But 
does it 
work?

★ Issues running the module from Google Colab
★ Need of a Fortran compiler, this is incompatible with M1 

chips and/or latest MacOS versions.
★ Extremely poor documentation.
★ Only works when cloning the repo from GitHub (several 

installation error when trying other methods)

Output has 5 
documented 

attributes, but 
the real output 

has 6.
???

Outdated examples don’t 
work with newer version 

of the code
No one helps with the 

issues of the code



Here i’ll show results

Is it really a 100% success 
rate like in the beggining
Why not

This module had 100% success rate for physics equations but 
does it work with our photometric redshift data?

★ ~5 hours run
★ 40-60s brute force
★ 7 and 14 different 

operations
★ 400 generations



Top 2 
best 
results

Top 2 
worst 
results



Top 2 best results

Top 2 worst results

¿Overfitting?

¿Lack of 
symmetries? ¿More 

Hyperparameters?

Physical Units



Can we do 
better?
What options 
do we have?



 
Distributed Evolutionary 

Algorithms in Python



Function Tree Generated with Low Mutation Probability (0.1)

Key:

u (ultraviolet)

g (green)

r (red)

i (near infrared)

z (infrared)



Function Tree Generated with High Mutation Probability (0.5)

Detail:



Actual vs Predicted Redshift Using Test Set

Train MSE: 0.009436633746104504
Test MSE:  0.011748787926479643

(Has extreme outliers)
Train MSE: 0.010570410476361494
Test MSE:  0.009859116739871634



Genetic Programming in Python



What about the equations we get?
User friendly and easy to use right away

gplearn allows to penalize more complex solutions

Key Questions

● What kind of equations do we get for different 
complexity?

● Do they resemble the equation we are trying to recreate?
● What variables are used/not used?
● Are the results better for more complex solutions?



Complexity of Equations

Low Complexity Medium Complexity High Complexity

Reference 
Eq.



Interpreting Equations
● Even though we have analytic solutions, they can be hard to 

interpret!
● More complex solutions ≠ better solutions
● Some solutions don’t even use the same variables, but can yield 

very similar results
● This raises the question: how can we trust the relations that we 

get?
● What if a strict analytic relation does not exist?

All things to keep in mind when doing symbolic regression





PySR: Great control over complexity

maxsize : Max complexity of an equation.

maxdepth : Max depth of an equation

warmup_maxsize_by : Slowly increase max size from a small number up to the maxsize 

constraints : This enforces maxsize constraints on the individual arguments of 

operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left 

argument, but only 1 complexity in the right argument. Use this to force more 

interpretable solutions.

nested_constraints : Specifies how many time a combination of operators can be nested

complexity_of_operators :  For example,`{"sin": 2, "+": 1}` 

complexity_of_constants : Complexity of constants.

complexity_of_variables : Complexity of variables.



PySR: More complex, little improvement



Some equations
Complexity Equation

1

7

14

31

(Which is actually the mean of the training set)



Max complexity = 35
Max nesting      = 24



Max complexity = 40
Max nesting      = 28



Krone-martins’ prediction on our dataset



Kernel density estimation from Krone-martins’ 
equation

Kernel density estimation from PySR 
complexity 14 equation (max comp 40)



Kernel density estimation from Krone-martins’ 
equation

Kernel density estimation from PySR 
complexity 13 equation (max comp 35)



Violin plot from the paper



Complexity 14 (max 40)

Large residuals at low redshift



Complexity 13 (max comp 35)

Centrated on zero with higher dispersion



★ Ease of use (once you get all the installation issues out of the 
way)

★ Great predictions for a wide range 
of physics equations

★ Extremely poor documentation
★ Not many possible hyperparameters to 

tweak
★ Good predictions w/ small errors are 

long and complicated expressions

★ Highly customizable
★ Tree based visualization is 

possible

★ Difficult and long expressions are hard 
to simplify

★ User friendly and easy to use
★ Variety of different expressions 

that are good predictions

★ Needs more hyperparameter tuning
★ Controlling complexity isn’t as easy

★ Fast and Robust
★ Good control over complexity 

configuration.

★ Poor documented but straightforward to 
read options direct from the code

Module

AI
Feynman

Pros Cons



General Conclusions

★ Penalization over complexity leads to time 
efficient solutions (better MSE in less time, 
less space to explore)

★ Super complex solutions are difficult to 
explain, it’s better to keep it simple.

★ A better MSE can happen at the cost of 
weak prediction on a range for a better 
prediction on another ranges.

★ Symbolic Regression sounds great 
and promising but it’s not simple at all.

Many Open 
Source options, 

just choose 
wisely



Conclusions

About the packages

● AI Feynman:
● DEAP:
● GPLearn:
● PySR: The most robust overall (and the newest)

About complexity and explainability of the equations

● Penalization over complexity leads to time efficient solutions (better mse in 
fewer runs)

● Super complex solutions are difficult to explain, it’s better to keep it simple.
● A better mse can happen at the cost of weak prediction on a range for a better 

prediction on another ranges.



About the packages

● AI Feynman:
● DEAP:
● GPLearn:
● PySR: The most robust overall (and the newest)

About complexity and explainability of the equations

● Penalization over complexity leads to time efficient solutions (better mse in 
less time, less space to explore)

● Super complex solutions are difficult to explain, it’s better to keep it simple.
● A better mse can happen at the cost of weak prediction on a range for a better 

prediction on another ranges.

Conclusions



Thank you! 


