

Tree-based methods La Serena Data School

Jocelyn Dunstan University of Chile

August 2019

Announcement: Saturday's session is on natural language processing

First time in LSSDS!

Teaching tree-based methods in LSSDS might feel like playing the bass guitar in a band...

But trees can be as worthy as Paul McCartney playing the bass!

Also Pavlos Protopapas used to teach this lecture!

https://harvard-iacs.github.io/2018-CS109A/

So let's have a plan to learn trees!

- Separation of the predictor's space
- Tree structure and special features
- Aggregating trees
- XGBoost and AdaBoost
- Hands-on

Idea behind trees: Segmentation of predictor space

Adapted from Introduction to Statistical Learning by James, Witten, Hastie & Tibshirani

Springer Texts in Statistics

Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Search

https://www.r-bloggers.com/in-depth-introduction-to-machinelearning-in-15-hours-of-expert-videos/

And the same intuition is valid for regression trees

Adapted from Introduction to Statistical Learning by James, Witten, Hastie & Tibshirani

Tree-based compared to linear models

From Introduction to Statistical Learning

The problem is that usually you don't know how your data looks when plotted in a high dimensional space

Tree structure

Upside down tree!

Building a tree

• In general, the problem of creating N boxes with different sizes from the data is unfeasible!

• Trees act locally: for a given predictor, find the splitting point

Steps: classification trees

Ways to stop splitting:

- Maximum depth
- Certain function less than a value
- Number of samples in each terminal node

Gini index

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Where p_{mk} is the proportion of training observations in the mth region from the k-class

Shannon's entropy

Information gain

	Class 1	Class 2	$Entropy(i j,t_j)$
R_1	0	6	$-(\frac{6}{6}\log_2\frac{6}{6} + \frac{0}{6}\log_2\frac{0}{6}) = 0$
R_2	5	8	$-\left(\frac{6}{6}\log_2\frac{6}{6} + \frac{0}{6}\log_2\frac{0}{6}\right) = 0$ $-\left(\frac{5}{13}\log_2\frac{5}{13} + \frac{8}{13}\log_2\frac{8}{13}\right) \approx 1.38$

https://harvard-iacs.github.io/2018-CS109A/

Evaluation of classification

Confusion matrix

		True condition		
	Total population	Condition positive	Condition negative	
Predicted	Predicted condition positive	True positive	False positive, Type I error	
condition	Predicted condition negative	condition False negative, Type II error	True negative	

https://en.wikipedia.org/wiki/Confusion_matrix

Evaluation of classification

sensitivity, recall, hit rate, or true positive rate (TPR) $TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$ specificity, selectivity or true negative rate (TNR) $TNR = \frac{TN}{N} = \frac{TN}{TN + FP} = 1 - FPR$ precision or positive predictive value (PPV) $PPV = \frac{TP}{TP + FP} = 1 - FDR$

ACC =
$$\frac{\text{TP} + \text{TN}}{P + N} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

F1 score
is the harmonic mean of precision and sensitivity
 $F_1 = 2 \cdot \frac{\text{PPV} \cdot \text{TPR}}{\text{PPV} + \text{TPR}} = \frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}$

https://en.wikipedia.org/wiki/Confusion_matrix

Evaluation of classification

		Actual class		
		Cat	Dog	Rabbit
ed a	Cat	5	2	0
Predicted class	Dog	3	3	2
Pre	Rabbit	0	1	11

		Actual class		
		Cat	Non-cat	
Predicted	Cat	5 True Positives	2 False Positives	
Pred	Non-cat	3 False Negatives	17 True Negatives	

https://en.wikipedia.org/wiki/Confusion_matrix

Evaluation of regression

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Minimize root-square error (RSS), where R_J is the region J

Pruning the tree

Trees with too many branches are likely to overfit the data

Tree methods special features

- They work well with small data
- No need to normalize your data before, but you do if you are going to compare with other methods
- Are easy to explain
- Competitive performance, specially when many are averaged.
- Allow inference and dimensionality reduction

Examples of tree-based methods

- Decision trees
- Random Forest
- Xtreme Gradient Boosting (XGBoost)
- AdaBoost

Random Forest

• Decorrelates trees by picking a random selection of m

predictors each time (m < n)

- Tuning parameters:
 - Number of trees
 - m predictors
 - When to stop? P-value, entropy, depth

• Variable importance list

Random Forest

- There are default parameters, but in general they should be tuned for the specific training data.
- For example, Breiman's recommendation for m is sqrt(n) for classification and n/3 for regression, but is a parameter that should be explored.

Variable importance list

Is a measure of the decrease accuracy, averaged over all trees,

when one predictor is left aside in the model

https://doi.org/10.1177/1460458219845959

Gradient boosting

- Basic idea: we can have a better model by adding single models
- The method works iteratively, adding a single model if compensates weaknesses of the current model

Gradient boosting

- 1. Fit a simple model $T^{(0)}$ on training data, $T <-T^{(0)}$
- 2. Calculate residuals for T
- 3. Fit a simple model $T^{(1)}$ for the current residuals
- 4. T <- T+ λ T⁽¹⁾, where λ is called learning rate (turning parameter)
- 5. Continue the iteration until stopping condition is met.

Gradient boosting

- When we realize that gradient boosting is an example of gradient descent we can import a bunch of knowledge
- For example knowing that for an appropriate choice of λ,
 the iterative process will eventually converge if the

function is convex

• In this case the function to minimize is the MSE

https://harvard-iacs.github.io/2018-CS109A/

AdaBoost

- Can be seen as the analogy of gradient boosting for classification
- Since the function error in classification is not differentiable (is either 0 or 1), we can use the exponential loss:

$$ExpLoss = \frac{1}{n} \sum_{k=0}^{n} \exp(-y_n \hat{y}_n)$$

https://harvard-iacs.github.io/2018-CS109A/

Hands on!

