
Lecture : Decision Trees for Classification
La Serena School For Data Science

Pavlos Protopapas

Lecture Outline

2

Motivation

3

Geometry of Data

Recall that logistic regression for classification works
best when the classes are well-separated in the feature
space by a decision boundary defined by some equation

f(x1, . . . , xJ) = 0

The following is a typical dataset for logistic regression
with a linear boundary:

4

Geometry of Data

Discuss the suitability of the following datasets for
logistic regression:

4

Geometry of Data

Discuss the suitability of the following datasets for
logistic regression:

4

Geometry of Data

Notice that in all of the datasets the classes are still
well-separated in the feature space, but the decision
boundaries cannot be described by single equations:

4

Interpretable Models

While logistic regression models with linear boundaries
are intuitive to interpret by examining the impact of
each predictor on the log-odds of a positive
classification, it is less straightforward to interpret
nonlinear decision boundaries in context:

(x3 + 2x2)
2 − x1 + 10 = 0

It would be desirable to build models with complex
decision boundaries that are also easy to interpret.

5

Interpretable Models

But people in every walk of life have long been using
interpretable models for differentiating between
classes of objects and phenomena:

5

Interpretable Models

But people in every walk of life have long been using
interpretable models for differentiating between
classes of objects and phenomena:

5

Decision Trees

It turns out that the simple flow charts in our examples
can be formulated as mathematical models for
classification and these models have the properties we
desire; they are:

1. interpretable by humans

2. have sufficiently complex decision boundaries

3. the decision boundaries are locally linear, each
component of the decision boundary is simple to
describe mathematically.

6

Decision Trees

7

The Geometry of Flow Charts

Flow charts whose graph is a tree (connected and no
cycles) represents a model called a decision tree.

Formally, a decision tree model is one in which the final
outcome of the model is based on a series of
comparisons of the values of predictors against
threshold values.

In a graphical representation (flow chart),

▶ the internal nodes of the tree represent attribute
testing

▶ branching in the next level is determined by
attribute value

▶ leaf nodes represent class assignments

8

The Geometry of Flow Charts

Flow charts whose graph is a tree (connected and no
cycles) represents a model called a decision tree.

Formally, a decision tree model is one in which the final
outcome of the model is based on a series of
comparisons of the values of predictors against
threshold values.

8

The Geometry of Flow Charts

Every flow chart tree corresponds to a partition of the
feature space by axis aligned lines or (hyper) planes.
Conversely, every such partition can be written as a flow
chart tree.

Each comparison and branching represents splitting a
region in the feature space. Typically, at each iteration,
we split once along one dimension (one predictor).

8

Learning the Model

Given a training set, learning a decision tree model for
binary classification means to produce an ‘optimal’
partition of the feature space with axis aligned linear
boundaries, wherein each region is given a class label
based on the largest class of the training points in that
region.

9

Learning the Model

Learning the smallest ‘optimal’ decision tree for any
given set of data is NP complete for numerous simple
definitions of ‘optimal’. Instead, we will seek a
reasonably model using a greedy algorithm.

1. Start with an empty decision tree (undivided
feature space)

2. Choose the ‘optimal’ predictor on which to split and
choose the ‘optimal’ threshold value for splitting.

3. Recurse on on each new node until stopping
condition is met

Now, we need only define our splitting criterion and
stopping condition.

9

Numerical vs Categorical Attributes

Note that the compare and branch method by which we
defined regression tree works well for numerical
features.

However, if a feature is categorical (with more than two
possible values), comparisons like feature < threshold
does not make sense.

A simple solution is to encode the values of a
categorical feature using numbers and treat this
feature like a numerical variable.

This is indeed what some computational libraries (e.g.
sklearn) do, however, this method has drawbacks.

10

Numerical vs Categorical Attributes

Example
Suppose the feature we want to split on is color, and the values are: Red, Blue and
Yellow. If we encode the categories numerically as:

Red = 0, Blue = 1, Yellow = 2

Then the possible non-trivial splits on color are

{{Red}, {Blue, Yellow}}, {{Red,Blue}, {Yellow}}

But if we encode the categories numerically as:

Red = 2, Blue = 0, Yellow = 1

The possible splits are

{{Blue}, {Yellow,Red}}, {{Blue, Yellow}, {Red}}

Depending on the encoding, the splits we can optimize over can be different!

10

Numerical vs Categorical Attributes

In practice, the effect of our choice of naive encoding of
categorical variables are often negligible - models
resulting from different choices of encoding will
perform comparably.

In cases where you might worry about encoding, there is
a more sophisticated way to numerically encode the
values of categorical variables so that one can optimize
over all possible partitions of the values of the variable.

This more principled encoding scheme is
computationally more expensive but is implemented in
a number of computational libraries (e.g. R’s
randomForest).

10

Splitting Criteria

11

Optimality of Splitting

While there is no ‘correct’ way to define an optimal split,
there are some common sensical guidelines for every
splitting criterion:

▶ the regions in the feature space should grow
progressively more pure with the number of splits.
That is, we should see each region ‘specialize’
towards a single class.

▶ the fitness metric of a split should take a
differentiable form (making optimization possible)

▶ we shouldn’t end up with empty regions - regions
containing no training points.

12

Classification Error

Suppose we have J number of predictors andK classes.

Suppose we select the j-th predictor and split a region
containing N number of training points along the
threshold tj ∈ R.

We can assess the quality of this split by measuring the
classification error made by each newly created region,
R1, R2:

Error(i|j, tj) = 1−max
k

p(k|Ri)

where p(k|Ri) is the proportion of training points in Ri

that are labeled class k.

13

Classification Error

Example
Class 1 Class 2 Error(i|j, tj)

R1 0 6 1−max{6/6, 0/6} = 0
R2 5 8 1−max{5/13, 8/13} = 5/13

We can now try to find the predictor j and the threshold
tj that minimizes the average classification error over
the two regions, weighted by the population of the
regions:

min
j,tj

{
N1

N
Error(1|j, tj) +

N2

N
Error(2|j, tj)

}
where Ni is the number of training points inside region
Ri.

13

Gini Index

Suppose we have J number of predictors, N number of
training points andK classes.

Suppose we select the j-th predictor and split a region
containing N number of training points along the
threshold tj ∈ R.

We can assess the quality of this split by measuring the
purity of each newly created region, R1, R2. This metric
is called the Gini Index:

Gini(i|j, tj) = 1−
∑
k

p(k|Ri)
2

Question: What is the effect of squaring the proportions
of each class? What is the effect of summing the
squared proportions of classes within each region?

14

Gini Index

Example
Class 1 Class 2 Gini(i|j, tj)

R1 0 6 1− (6/62 + 0/62) = 0
R2 5 8 1− [(5/13)2 + (8/13)2] = 80/169

We can now try to find the predictor j and the threshold
tj that minimizes the average Gini Index over the two
regions, weighted by the population of the regions:

min
j,tj

{
N1

N
Gini(1|j, tj) +

N2

N
Gini(2|j, tj)

}
where Ni is the number of training points inside region
Ri.

14

Information Theory

The last metric for evaluating the quality of a split is
motivated by metrics of uncertainty in information
theory.

Ideally, our decision tree should split the feature space
into regions such that each region represents a single
class. In practice, the training points in each region is
distributed over multiple classes, e.g.:

Class 1 Class 2
R1 1 6
R2 5 6

However, though both imperfect, R1 is clearly sending a
stronger ‘signal’ for a single class (Class 2) than R2.

15

Information Theory

One way to quantify the strength of a signal in a particular
region is to analyze the distribution of classes within the
region. We compute the entropy of this distribution.

For a random variable with a discrete distribution, the
entropy is computed by

H(X) = −
∑
x∈X

p(x) log2 p(x)

Higher entropy means the distribution is uniform-like (flat
histogram) and thus values sampled from it are ‘less
predictable’ (all possible values are equally probable).

Lower entropy means the distribution has more defined
peaks and valleys and thus values sampled from it are ‘more
predictable’ (values around the peaks are more probable).

15

Entropy

Suppose we have J number of predictors, N number of
training points andK classes.

Suppose we select the j-th predictor and split a region
containing N number of training points along the
threshold tj ∈ R.

We can assess the quality of this split by measuring the
entropy of the class distribution in each newly created
region, R1, R2:

Entropy(i|j, tj) = −
∑
k

p(k|Ri) log2[p(k|Ri)]

Note: we are actually computing the conditional
entropy of the distribution of training points amongst
theK classes given that the point is in region i.

16

Entropy

Example
Class 1 Class 2 Entropy(i|j, tj)

R1 0 6 −(6
6
log2

6
6
+ 0

6
log2

0
6
) = 0

R2 5 8 −(5
13
log2

5
13

+ 8
13
log2

8
13
) ≈ 1.38

We can now try to find the predictor j and the threshold
tj that minimizes the average entropy over the two
regions, weighted by the population of the regions:

min
j,tj

{
N1

N
Entropy(1|j, tj) +

N2

N
Entropy(2|j, tj)

}

16

Comparison of Criteria

Recall our intuitive guidelines for splitting criteria,
which of the three criteria fits our guideline the best?

We have the following comparison of the value of the
three criteria at different levels of purity (from 0 to 1) in
a single region.

17

Comparison of Criteria

Recall our intuitive guidelines for splitting criteria,
which of the three criteria fits our guideline the best?

To note that entropy penalizes impurity the most is not
to say that it is the best splitting criteria. For one, a
model with purer leaf nodes on a training set may not
perform better on the testing test.

Another factor to consider is the size of the tree (i.e.
model complexity) each criteria tends to promote.

To compare different decision tree models, we need to
first discuss stoping conditions.

17

Stopping Conditions & Pruning

18

Variance vs Bias

If we don’t terminate the decision tree learning
algorithmmanually, the tree will continue to grow until
each region defined by the model contains exact one
training point (and the model attains 100% training
accuracy).

To prevent this from happening, we can simply stop the
algorithm at a particular depth.

But how do we determine the appropriate depth?

19

Variance vs Bias

Consider the result of training a decision tree of various
depths on a previous example dataset:

19

Variance vs Bias

Wemake some observations about our models:

▶ (Bias) A tree of depth 4 is not a good fit for the training data -
it’s unable to capture the nonlinear boundary separating the
two classes.

▶ (Bias)With an extremely high depth, we can obtain a model
that correctly classifies all points on the boundary (by
zig-zagging around each point).

▶ (Variance) The tree of depth 4 is robust to slight
perturbations in the training data - the square carved out by
the model is stable if you move the boundary points a bit.

▶ (Variance) Trees of high depth are sensitive to perturbations
in the training data, especially to changes in the boundary
points.

Not surprisingly, complex ones have low bias (able to capture more
complex geometry in the data) but high variance (can over fit).
Complex trees are also harder to interpret and more
computationally expensive to train.

19

Stopping Conditions

Common simple stopping conditions:

▶ Don’t split a region if all instances in the region
belong to the same class

▶ Don’t split a region if the number of instances in
the sub-region will fall below pre-defined threshold

▶ Don’t split a region if the total number of leaves in
the tree will exceed pre-defined threshold

The appropriate thresholds can be determined by
evaluating the model on a held-out data set or, better
yet, via cross-validation.

20

Stopping Conditions

More restrictive stopping conditions:
▶ Don’t split a region if the class distribution of the
training points inside the region are independent of
the predictors

▶ Compute the gain in purity, information or
reduction in entropy of splitting a region R

Gain(R) = ∆(R) = m(R)− N1

N
m(R1)−

N2

N
m(R2)

wherem is a metric like the Gini Index or entropy.
Don’t split if the gain is less than some pre-defined
threshold.

20

Pruning

Rather than preventing a complex tree from growing, we
can obtain a simpler tree by ‘pruning’ a complex one.

There are many method of pruning, a common one is
cost complexity pruning, where we select from an array of
smaller subtrees of the full model that optimizes a
balance of performance and efficiency.

That is, we measure

C(T) = Error(T) + α|T |

where T is a decision (sub) tree, |T | is the number of
leaves in the tree and α is the parameter for penalizing
model complexity.

21

Pruning

The pruning algorithm:

1. Start with a full tree T0 (each leaf node contains
exactly one training point)

2. Replace a subtree in T0 with a leaf node to obtain a
pruned tree T1. This subtree should be selected to
minimize

Error(T0)− Error(T1)

|T0| − |T1|
3. Iterate this pruning process to obtain T0, T1, . . . , TL,

where TL is the tree containing just the root of T0.

4. Select the optimal tree Ti by cross validation.

Note: you might wonder where we are computing the
cost-complexity C(Tl). One can prove that this process
is equivalent to explicitly optimizing C .

21

An Example

[demonstrate difference between different splitting
criteria] [demonstrate difference between different
stopping conditions] [demonstrate overfitting and
variance]

22

