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LINEAR REGRESSION REVISITED
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This is a scatter plot of home
prices vs square footage of
some homes in southern
California.



LINEAR REGRESSION REVISITED

This is a scatter plot of home
prices vs square footage of
. some homes in southern

Price vs Sqft

E . California.
£ g | . Say we want to model the
& op T data with a linear function.

How do we measure how
‘ good is our model?
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NOTIONS OF ERROR

Price vs Sqft (with Residuals)

An absolute residual is the
absolute difference between
? the actual price of a home
and the price predicted by
the line for a given square

3 ., footage.

b ¢ Observed Price

Error

1 Prediction Line Resj = |Observed;—Predicted;|

The i-th absolute residual
| measures the magnitude of
the “error” made by the i-th

s prediction.




NOTIONS OF FITNESS

Recall: Fitting a (linear) model means finding parameters that
minimizes a choice of loss function.

1. (Max absolute deviation) Count only the biggest “error”

Loss Function = max|Observed; — Predicted;|
I

2. (Sum of absolute deviations) Add up all the “errors”

Loss Function = Z |Observed; — Predicted,|
i

We can also average them.
3. (Sum of squared errors) Add up the squares of the “errors”

Loss Function = Z |Observed; — Predicted;|?

I

Question: Which loss function should we choose?



NOTIONS OF FITNESS

Which loss function we choose to minimize depends on how, we
believe, the “residual” (difference between observed and predicted
values) arise.



LECTURE OUTLINE

Probabilistic Model for Linear Regression
Introduction to Bayesian Inference
Summary

Loose Ends and Lingering Questions



TALK OUTLINE

Probabilistic Model for Linear Regression



THE STOCHASTIC MODEL FOR LINEAR REGRESSION

Our belief: The relationship between price (y) and square footage (x)
is linear, and that observed prices differ from our pricing rule by
some random amount, €, which we call residual or noise.

y= pi-x+p + _€

theoretical price noise

In class, we have believed that the € is a random variable which is

normally distributed
e~ N(0,0°)

Question: What can we deduce about y given our model for price
and our assumption about €?



THE STOCHASTIC MODEL FOR LINEAR REGRESSION

Based on our model
y=pB1-x+pBo+e e~N(0,0%)
We see that:

1. yis a random variable.

2. If we are given fixed values for 34, 8o, X, then the corresponding
price y is @ random variable, y|B1, 5o, X, whose is determined by the
distribution of ¢,

ylﬂ%ﬂOaX ~ 7



THE RANDOM VARIABLE V|3, B0, X

Let’s fix x = 500 sqft, 51 = 2, Bo = 0.5 mil, o? = 1.

Let's sample e from A(0,0?), and guess at the distribution of

y|ﬂ1vﬂ07X~

That is, we make histograms of the following table:

€ y=pX+Bo+e
0 BiX + Bo =2 %500+ 0.5

-0.024 | Bix+ Bo — 0.024 =2 %500 4 0.5 — 0.024



THE RANDOM VARIABLE V|3, B0, X

Let’s fix x = 500 sqft, 51 = 2, Bo = 0.5 mil, 6% =1.

Let's sample € from A(0,0?), and guess at the distribution of
y|ﬂ17ﬂ07X-

Histogram of Noise, epsilon, for 1 samples Histogram of y = b_1*x + b_0 + epsilon, for 1 samples
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g g
F z
£ 04 © 04
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09 00
12 14 16 18 20 22 24 08 10 12 14 16 18 2
Value of epsilon Value of y|b_1, b_0, x, epsilon +1.001e3



THE RANDOM VARIABLE V|31, o, X

Let’s fix x = 500 sqft, f; = 2, Bo = 0.5 mil, % = 1.

Let's sample € from A(0,0?), and guess at the distribution of

y|ﬂ17507x-

Histogram of Noise, epsilon, for 10 samples of y = b_1*x + b_0 + epsilon, for 10 samples

10 10
08 08
Z 06 Z 06
g g
g g
g o4 £ 04
02 02
00 00
20 15 10 -05 00 05 10 15 05 10 15 20 25 30 35 4
Value of epsilon Value of y|b_1, b_0, x, epsilon +9.98e2



THE RANDOM VARIABLE V|31, o, X

Let’s fix x = 500 sqft, 81 = 2, Bo = 0.5 mil, o? = 1.

Let's sample e from N(0,?), and guess at the distribution of

y|ﬁ17507X~

o Histogram of Noise, epsilon, for 100 samples o Histogram of y = b_1*x + b_0 + epsilon, for 100 samples
8 8
7 7
58 6
g° §°
g 4 g 4
£3 =3
2 H_H 2
1 1
oL 1 Fﬂ] I il Fﬂ L1 1
-4 -3 -2 -1 0 1 2 3 0 1 2 3 4 5 6
Value of epsilon Value of y|b_1, b_0, x, epsilon +9.97e2



THE RANDOM VARIABLE V|31, o, X

Let’s fix x = 500 sqft, 51 = 2, Bo = 0.5 mil, o? = 1.

Let's sample e from N(0,0?), and guess at the distribution of

y|ﬁ1vﬁ07X~

of y = b_1*x + b_0 + epsilon, for 1000 samples

0 Histogram of Noise, epsilon, for 1000 samples s
60 60
50 50
> >
g 40 2 40
g g
2 3
i g
20 20
10 10
0 )
-4 -3 -2 -1 [ 1 2 3 4 ) 2 3 4 5 3 7
Value of epsilon Value of y|b_1, b_0, , epsilon +9.97e2



THE RANDOM VARIABLE V|31, o, X

Let’s fix x = 500 sqft, 51 =2, Bo = 0.5 mil, 6% = 1.

Let's sample € from A(0,2), and guess at the distribution of

y|ﬁ17507X-

Histogram of Noise, epsilon, for 10000 samples Histogram of y = b_1*x + b_0 + epsilon, for 10000 samples
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Value of epsilon Value of y|b_1, b_0, x, epsilon +9.96e2



THE RANDOM VARIABLE V|3, B0, X

It looks like, if € ~ N(0, 0%), then y|B4, Bo, X is normally distributed
with mean pix + By and variance o2, i.e.

V|81, Bo, X ~ N(Bix + Bo, 02)

Sanity check: Check your understanding of the normal distribution.
Does this conclusion make intuitive, common sense?



THE RANDOM VARIABLE V|3, B0, X

It was simple to guess the distribution of y| 5, 5o, x for one fixed
value of x.

But in a real data set, we have multiple values of x. How do we
consider the distribution of all the y values at once?

N

{ yi|ﬁ17ﬁ07xi }(':1



THE LIKELIHOOD FUNCTION

Say our data set consists of X = {x1,...,xy} and Y = {y4,...,yn}, and
{e1,...,en} are the corresponding noise variables.

If we assume that the noise is identically distributed, i.e.

i ~ N(0,0?), then each y;|B31, Bo, x; is normally distributed with the
same variance,

YilB1, Bos Xi ~ N (Bixi + Bo, 02).
We denote the pdf by p(vi|51, Bo, Xi)



THE LIKELIHOOD FUNCTION

Say our data set consists of X = {x,...,xy} and Y = {y1,...,yn}, and
{e1,...,en} are the corresponding noise variables.

If we assume that the ¢;'s are independent, then so are the
YilB1, Bo, Xi's.

Thus, the joint probability of all the y-values (given the x-values,
noise and model parameters) is product of the pdf of each
yi|5‘]7507Xi:

N N

L(B1, Bo) = P(Y|B1, B0, X) = [ [ pil B1, Bo, i) = [ [N (Vi Brxi + Bo, o)

=1 i=1

L(Bh, Bo) is called the likelihood function.

Note that since X is always given, L is just a function of the model
parameters!



MODEL SELECTION USING THE LIKELIHOOD

Question: What exactly does the likelihood function mean? And
what is it good for?

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

Say we're considering two linear models for the data {(1,2), (2,3)},
with identically independently distributed (i.i.d.) noise, ¢ ~ N(0,1).

B M y=x+2
B M,:y=2-2x

Which model is the most appropriate for the data, assuming one is
correct?

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

Say we're considering two linear models for the data {(1,2), (2,3)},
with identically independently distributed (i.i.d.) noise, ¢ ~ N(0,1).
B M y=x+2
L(B1 =1, B0 = 2) = N(yiix1 + 2, ) N(y2: %2 + 2,1)
p(yilx1,81,80) p(y2lx2,61,80)

B M,:y=2-2x
L(Br = —=2,80 =2) = N(y1:2 — 21, 1) N(y2;: 2 — 2%, 1)
p(ylx1,61,80) p(y2|x2,81,80)

Which model is the most appropriate for the data, assuming one is
correct?

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

In [38]: #Data

[
o
w

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

Model 1: L(ﬂ1 = 1,,30 = 2) = N(y1;X1 + 2, 1)N(y2;X2 + 2, 1) = 0.0585498

In [114]: # likelihood calculation for b 0 = 2, b 1 =1
lkhd_1 = scipy.stats.norm(x_1 + 2, 1)
lkhd_2 = scipy.stats.norm(x_2 + 2, 1)

likelihood = 1lkhd_1l.pdf(y_1) * lkhd 2.pdf(y_2)
print round(likelihood, 7)

0.0585498

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

Model 1: l_(ﬂ1 = 1,50 = 2) = N(y1;X1 + 2, 1)N(y2;X2 + 2, 1) = 0.0585498
Model 2: L(ﬁ1 =-2,60= 2) = ./\/’(yw; 2 —2x, 1)./\/()/2; 2 — 2X3, 1) = 0.0000001
In [118]: # likelihood calculation for b 0 = 2, b 1 = -2

lkhd_1 = scipy.stats.norm(2 - 2 * x 1, 1)
1khd_2 scipy.stats.norm(2 - 2 * x 2, 1)

likelihood = 1lkhd 1l.pdf(y_1) * lkhd_2.pdf(y_2)
print round(likelihood, 7)

le-07

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

Model 1: L(B1 =1,60 = 2) = N(ys; %1 + 2, DN (y2; X2 +2,1) = 0.0585498
Model 2: L(81 = =2, 80 = 2) = N(v1;2 — 2x1, DN (y2; 2 — 22, 1) = 0.0000001

Analysis: We are 10,000 times more likely to observe our data under Model 1
than under Model 2.

This means that, if Model 2 is correct, by observing the data {(1,2), (2,3)},
we were 10,000 times luckier than we needed to be if Model 2 is correct.

I just don’t believe in luck!

1



MODEL SELECTION USING THE LIKELIHOOD

Example:

Model 1: L(ﬂ1 = 1,,30 = 2) = N(y1;X1 + 2, 1)N(y2;X2 + 2, 1) = 0.0585498

Model 2: L(B1 = —2750 = 2) = ./\/’(yw; 2 — 2Xq, 1)./\/()/2; 2 — 2X3, 1) = 0.0000001

Conclusion: We should always select the model that makes observing our
data maximally probable (least like a coincidence). l.e. we want to select
parameters B1, Bo to maximize the likelihood function.

1



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for fy, 87 so that the likelihood of the data L(5o, 81)
is maximized.

p(yil Bo,B1,Xi)

Let's make L(Bo, 51) = HL N (yi; Bixi + o, o) more friendly, by
turning the multiplication into addition:

N
log likelihood = In L(Bo, 81) = > _ IN N (¥i; BiX; + Bo, 0°)

i=1

Since the [n function is monotone increasing on R, maximizing
likelihood is equivalent to maximizing log likelihood.



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for By, 1 so that the likelihood of the data L(Bo, 51)
is maximized.

Let's expand the log likelihood function a bit (use C, K to rep
constants that depend on o?):

N
InL(B1, Bo) = D INN(Vi; Bix; + Bo, 0?) (1)

i=1



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for By, 1 so that the likelihood of the data L(Bo, 51)
is maximized.

Let's expand the log likelihood function a bit (use C, K to rep
constants that depend on o?):

N
InL(B1, Bo) = D _ INN(Vi; Bix; + Bo, 0?) (1)

i=1



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for By, ;1 so that the likelihood of the data L(5o, 81)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

Mz

InL(B, Bo) = In N (vi; Bixi + Bo, o) (1)

i=1

i {C* exp{ (’_&XK/_/BO)ZH 2

i=1



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for By, ;1 so that the likelihood of the data L(5o, 81)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

Mz

InL(B, Bo) = In N (vi; Bixi + Bo, o) (1)

i=1

N 5
[ (i = Bixi = Bo)*
Ez {C exp IK} (2)



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for g, 81 so that the likelihood of the data L(So, 51)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

N

In L(BMBO):Z[HN(yi?61Xi+BOaUZ) (1)
N

:Zln {C*exp{—wg_ﬁo)z}] )

-

I
™=

{ln Cc— ()/151)(:50)2} (3)

K
il



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for g, 81 so that the likelihood of the data L(So, 51)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

N
n L(B, Bo) :Zln./\/(y,-;ﬁqx,-+ﬁo,az) (1)
N
:Z_;ln {C*exp{—wg_ﬁo)z}] )
(Vi — BiXi — Bo)?
3" et o] 0



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for g, 81 so that the likelihood of the data L(So, 51)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

N
In LB, Bo) :Zl”/\/(yi?ﬁwx:‘+50,02) (1)
N
:Z:;l [C*exp{_(yr‘—ﬂvlz’—ﬁo)z H )
N
_ _ W= Bxi—Bo)?
_/z:; {lnC ¢ } 3)
N
:Z nC—*Z ﬁwX, (4)

i=1



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for g, 81 so that the likelihood of the data L(So, 51)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

N
InL(B1, Bo) = D InN(¥i; Brx; + Bo, 0°) (1)

i=1
N
= — 2 (i — Bxi — Bo)? (2)
i—1
Since and . are constants,

N

maxL(B, Bo) < max(n L(B, Bo) < min Z BiXi — ﬂo)2

i=1



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for g, 81 so that the likelihood of the data L(So, 51)
is maximized.

Let’s expand the log likelihood function a bit (use C, K to rep
constants that depend on ¢?):

N
InL(Br, Bo) = Zln/\f(y,—;&x,»—i—ﬂo,az) (1)

i=1

N
= — 2 (i — Bxi — Bo)? ()
=1
Since and . are constants,
N

maxL(51, Bo) < maxlnL(5y, Bo) < min Z(y,- — Bixi — Bo)?

i=1

loss function for OLS



THE MAXIMUM LIKELIHOOD ESTIMATE

Goal: Find values for g, 81 so that the likelihood of the data L(8o, 51)
is maximized.

Observation: Maximizing likelihood is equivalent to minimizing
Residual Sum of Squares!

Model parameters that maximize the likelihood of the data are called
maximum likelihood estimates, or MLE, and are denoted BYtE, B)LE.

Sanity check: Why do | care again? Why am | so excited about the
equivalence of MLE and OLS?



AN EXAMPLE WITH USING THE MLE

Consider the following two sets of data and two MLE models. Do you

think the models are good? Why or why not?

price in millions.

Sqft vs Housing Price (Data Set 1)

2500
regression line,
2000}  b1=083,
b_0 = -865.4,
1500 R*2=0.71 o
0%¢ data e
1000 ~
,//
e
500 /,»/
//////
0 J g [¢]
.//
~
-500
-1000 . .
0 500 1000 1500 2000 2500 3000 3500
square ft

price in millions

400000
200000

0
—200000
—400000
—-600000
-800000
-1000000

-1200000

Sqft vs Housing Price (Data Set 2)

regression line,

_ b1=-457
b_0 = 466668,
R"2=0.69
%0 data
500 1000 1500 2000 2500 3000
square ft



AN EXAMPLE WITH USING THE MLE

Consider the following two sets of data and two MLE models. Do you
think the models are good? Why or why not?

2500

2000

1500

1000

500

price in millions

=500

-1000

Sqft vs Housing Price (Data Set 1)

regression line,
_ b1=083
b_0 = -865.4,
R*2=0.71 o —
#% data e
e
e
-
-
~
® /X o
-
-
500 1000 1500 2000 2500 3000 3500
square ft

price in millions

400000

200000

0

200000

-400000

-600000

-800000

-1000000

-1200000

Sqft vs Housing Price (Data Set 2)

regression line,
b_1=-457,
b_0 = 466668,
R"2=0.69

o data

500 1000 1500 2000

square ft

2500 3000

In both cases, you rejected the model based on criteria (prior
beliefs) that you never made explicit in the modeling process!

3500



TALK OUTLINE

Introduction to Bayesian Inference

14



WHAT IS A PRIOR?

A prior distribution is distribution in terms of the model parameters
that encode your beliefs about the parameters (before even looking
at the data).

Rather than treating parameters as underlying fixed constants that
we are learning, we treat parameters like random variables with
distributions expressing our uncertainty about them.



WHAT IS A PRIOR?

Simple Linear Regression
When we're modeling the housing prices data, with y = 81x + o,

B We believe that ; can't be negative
B We believe that 3, is probably positive, and can’t be too large



WHAT IS A PRIOR?

Simple Linear Regression

When we're modeling the housing prices data, with y = S1x + S,

B We believe that 8; can't be negative

18|
|

16|
141
12|

B ~ InvBeta(2,3), p(B:) = ”27@)), B(2,3) = [7°t/(1+t)°dt
B We believe that 3, is probably positive, and can’t be too large



WHAT IS A PRIOR?

Simple Linear Regression
When we're modeling the housing prices data, with y = B1x + o,
B We believe that 8, can't be negative
_ Bi(1+B) 1 __ oo 5q
B ~InvBeta(2,3), p(f) = Zgha—, B(2,3)= [7t/(1+1)°dt
B We believe that 3, is probably positive, and can’t be too large

Normal Distribution

0.020
1

0.010
1

0.000
1

40 60 80 100 120 140 160

Bo ~ N(100,15), p(Bo) = C x exp{—{L=120"}



THE POSTERIOR DISTRIBUTION

Now that we know how to encode our prior beliefs about the model
parameters using prior distributions, how do we incorporate them
into our model?

p(Y[51, B0, X),  p(B1),p(Bo)

old: likelihood new: priors

or alternatively,

p(Y|B17507X,)a p(ﬁhﬁo)
—_————— N——

old: likelihood new: priors

16



THE POSTERIOR DISTRIBUTION

If we want to consider the likelihood and priors in conjunction we
should multiply their pdf’s:

D(Y|/81,/60,X) p(ﬂ1) p(/BO) or p(Y|B17ﬂ07X) p(/B1a/BO)
—— Y—

old: likelihood new: priors old: likelihood new: priors

16



THE POSTERIOR DISTRIBUTION

If we want to consider the likelihood and priors in conjunction we
should multiply their pdf’s:

P(Y|B1, Bo, X) + p(B1) * p(Bo) or  p(Y|B1, Bo,X) * p(51, Bo)
—— Y—

old: likelihood new: priors old: likelihood new: priors

Using Bayes Rule, we can express the above product succinctly:

p(Y|51, Bo, X) + p(51) * p(Bo) o p(Br, PolY, X)

old: likelihood new: priors posterior

The distribution of the model parameters given the data is called
the posterior distribution.

16



THE POSTERIOR DISTRIBUTION

If we want to consider the likelihood and priors in conjunction we
should multiply their pdf's:

P(Y|B1, Bo, X) + p(B1) * p(Bo) or  p(Y|B1, Bo,X) * p(51, Bo)
—— Y—

old: likelihood new: priors old: likelihood new: priors

Simple Linear Regression

For data X = {x1,...,xn}, Y = {¥1,...,yn} with i.i.d noise
e ~ N(0,0?). Using the priors we selected for the housing prices
dataset, our posterior looks like

N
p(B1, BolY, X) o< [ [N (vii Brx; + Bo, 0) * InvBeta(Bs; 2,3) * N'(Bo; 100, 15)
—— o
Posterior B Priors
Likelihood

16



THE MAXIMUM A POSTERIORI ESTIMATE

Question: What does the posterior distribution mean? And what is it
good for?

Example
Say we're considering two linear models for the data {(1,2)}:
B M:y=x+2
p(br=1,B=2x=1y=2)=15
posterior
BM,:y=2-2x
p(B/ = —2,60 =2|x =1,y =2) =0.0001

posterior

Which model is the most appropriate for the data?



THE MAXIMUM A POSTERIORI ESTIMATE

Observation: The posterior distribution tells us how likely is a set of
model parameters given the data.

Goal: We want to find the model parameters that maximizes the
posterior distribution.

Model parameters that maximize the posterior are called maximum
a posteriori estimates, or MAP, and are denoted g§4", B1"AP.



(NON) CONJUGATE PRIORS

Goal: We want to find the model parameters that maximizes the
posterior distribution.
Simple Linear Regression

For data X = {x1,...,xn}, Y = {¥1,...,yn} with i.i.d noise
e ~ N(0,0?). Using the priors we selected for the housing prices
dataset, our posterior looks like

p(B1,BolY.X) OC TTL, N(¥i:BiXi+Bo,0°) * InvBeta(31;2,3)+N (50;100,15)
N—_——

Posterior Likelihood Priors

2 =5 2
= (Cy*exp{7 b=ty }) . (B«;ﬁ; ) . (Cﬁo *exp{f L })




(NON) CONJUGATE PRIORS

Goal: We want to find the model parameters that maximizes the
posterior distribution.

Simple Linear Regression

For data X = {x1,...,xy}, Y = {»1,...,yn} with ii.d noise
e ~ N(0,0?%). Using the priors we selected for the housing prices
dataset, our posterior looks like

_ _ 2 -5 _ 2
D(B1,B0|V,X) X (Cy*exp{—(y Bw;y Bo) })%m(;ﬁ;; ),ﬁ(cﬂo*exp{_%})

Posterior

Maximizing p(51, Boly, X) will involve taking the (partial) derivative(s)
of the above and solving a system of nonlinear equations. That
sounds hard!



LINEAR REGRESSION WITH NORMAL PRIOR

Goal: We want to find the model parameters that maximizes the
posterior distribution.

Let's choose some easier priors of 8y and Bo. Say, Bo, B1 ~ N(0,1/))
(assuming o2 = 1).

Then, our posterior looks like:

N
p(IB'\7ﬁO|Y>X) X HN()/[;BVQ +5071)*N(B7; 0>1/>‘) *N(IB01071/)‘)
— ——

i=1
Posterior Priors

Likelihood

19



LINEAR REGRESSION WITH NORMAL PRIOR

Let's make the posterior friendlier by taking the log

N

In p(Br, BolY, X) o< In T N(vii Bixi + Bo, 1) % N (Br; 0,1/A) x N'(Bo; 0,1/2)
— j—
log posterior =1

N
= INN(Y;i Bixi + Bo, 1) + NN (B1;0,1/X) + In N (1 0,1/)

i=1

! N
1 1 1
:Zm( — ;Z(y,v—ﬁhx,-—ﬂo)z—i-m Cp, — 7AB§+M Ca, — ;)\612

~ =1

log of log of
log likelihood from before g of p(fo) g of p(fr)

To maximize the posterior, we can ignore the constants
(highlighted), and minimize the quantity:

N
min > (yi — Bixi — Bo)” + A(B5 + B7)

i=1

19



LINEAR REGRESSION WITH NORMAL PRIOR

Let's make the posterior friendlier by taking the log

N
In p(B1, BolY, X) o< In TN (vii Bix; + Bo, 1) * N'(B1: 0,1/A) * N'(Bo: 0,1/2)
N—————

i=1
log posterior

N
= NN (y;; B + Bo, 1) + NN (Br; 0,1/X) + N N(81;0,1/)

i=1

N
S i — Bixi — Bo)* + —AB+ Y~

log of log of
log likelihood from before g of p(Bo) g of p(n)

To maximize the posterior, we can ignore the constants
(highlighted), and minimize the quantity:

mmZ — Bixi — Bo)* + A(B5 + B7)

loss function of ridge regression
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LINEAR REGRESSION WITH NORMAL PRIOR

Goal: We want to find the model parameters that maximizes the
posterior distribution.

Observation: With normal priors for 3 and 3o,

N
p(Br, BolY,X) oc [T N i Bixi + Bo, 1) * N'(B1; 0,1/A) x N (Bo; 0,1/A)
N————

Posterior i Priors

Likelihood

the MAP estimates of 3, and 3, are precisely those found by ridge
regression.
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LINEAR REGRESSION WITH NORMAL PRIOR

Question: What kind of beliefs does a normal prior A/(0,1/))
encode?

Question: What is the effect of A on the normal priors?

Effect of lambda on Normal Priors

20 T
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LINEAR REGRESSION WITH LAPLACE PRIOR

Goal: We want to find the model parameters that maximizes the
posterior distribution.

Let's choose some different priors for 8; and S3q. Say,
Bo, B1 ~ L£(0,1/X) (assuming o = 1), where £(0,1/)) is a Laplace
distribution.

Then, our posterior looks like:

N
p(Br, BolY, X) o< [[ N (¥ii Bixi + Bo, 1) % L(Br; 0,1/A) * L(Bo; 0,1/A)
N————

. i=1 )
Posterior Priors

Likelihood
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LINEAR REGRESSION WITH LAPLACE PRIOR

Let's make the posterior friendlier by taking the log

N

Inp(B1, BolY, X) < Z N N(yj: B1Xj + B, 1) + In £(B81:0,1/X) + In L(By; 0,1/X)

—_— =
log posterior

N _ h = 2 A A
:;ln [Cy*exp{w}] +In {CBW *exp{g}] +In {CBO *exp{ ‘fol}J

N |
=3 InGy — = 3205 — B — Bl +InCg — =Xyl +InCg — =Xl Bol
“ =1 _ _

log likelihood from before log of p(1) log of p(Bo)

To maximize the posterior, we can ignore the constants
(highlighted), and minimize the quantity:

mmz Bixi — Bo)” + A(|Bo| + |B1])
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LINEAR REGRESSION WITH LAPLACE PRIOR

Let's make the posterior friendlier by taking the log

N
Inp(By, BolY, X) oc D NN (yji Brxj + Bg, 1) + In L£(B1:0,1/X) + In L(Bg; 0,1/X)
—_— i=1

N _ h— 2 bN A
:/Z‘;ln [Cy*exp{(y waz, Bo) }:|+ln {Cﬁ_‘*exp{ ‘fﬁ\}]+[n {cﬁo*exp{ \fol}]

i — B1x — Bo) + — XIB I+ — A8l

log posterior

M=

log likelihood from before log of p(/31) log of p(Bo)

To maximize the posterior, we can ignore the constants
(highlighted), and minimize the quantity:

mmz Bixi — Bo)* + AM(|Bo| + 161])

loss function of LASSO
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LINEAR REGRESSION WITH LAPLACE PRIOR

Goal: We want to find the model parameters that maximizes the
posterior distribution.

Observation: With Laplace priors for 8y and 3y,

N

p(B1, BolY, X) oc [T N (vii Bixi + Bo, 1) % £(B1;0,1/A) * L£(B0; 0,1/X)
N—————

Posterior = Priors

Likelihood

the MAP estimates of 3; and 3, are precisely those found by LASSO.
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LINEAR REGRESSION WITH LAPLACE PRIOR

Question: What kind of beliefs does a Laplace prior £(0,1/))
encode?

Question: What is the effect of A on the Laplace priors?

Effect of lambda on Laplace Priors

25
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TALK OUTLINE

Summary

21



WAIT...WHAT WAS ALL THAT AGAIN?

1. (Non-Probabilistic Regression) Learn parameters, 8y and /3, to minimize a loss
function, e.g. in OLS we solve
N

min RSS = min Z(V: — B — Bo)?

i=1
2. (Probabilistic Regression) Learn parameters, 3y and 34, to maximize the likelihood,
i.e. the probability of data given the parameters
maxp(Y‘B'ly:B(hx)
N———

Likelihood
The maximum likelihood estimators (MLE) parameters are the ones from OLS.

3. (Bayesian Regression) Learn parameters, B9 and 3y, to maximize the posterior, i.e.
the probability of parameters given the data

max p(B1, Bo, Y, X) oc max p(Y|B1, Bo, X) p(81)p(Bo) Q)
———
Posterior Likelihood Priors

The maximum a posteriori estimators (MAP) parameters are the ones from
regularized least squares (ridge or LASSO).
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TALK OUTLINE

Loose Ends and Lingering Questions
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WHAT IS THE POINT OF PROBABILISTIC MODELS?

In the last 5 weeks, we've already covered regression, regularization,
model selections in so many different ways.

Question: Why do we need the formalism of probabilistic models?

Question: What do we gain by reformulating loss function
minimization, regularization, etc, in terms of finding point estimates
from probability distributions?
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AFFECTS OF PRIORS

We've see that different choices of prior lead to different MAP
estimates of model parameters!

B Choosing normal priors in linear regression leads to ridge
regression

B Choosing Laplacian priors in linear regression leads to LASSO

Question: So how do we choose a “good prior”?
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MLE VS MAP

Question: Is there even a point to finding MAP? That is, are MLE and
MAP estimates different?

Question: If they are different, which one is “better”?
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ANALOGUE OF CONFIDENCE INTERVALS

Question: How “certain” are we in our MAP estimate?

Question: What's the difference between a point estimate (MLE,
MAP) and “confidence intervals” or “intervals of certainty”?
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USING NON-CONJUGATE PRIORS

Question: Isn't it too arbitrary to choose priors simply because they
are mathematically convenient?

Question: If we choose complicated priors, how do we find the MAP?
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