AURA Observatory in Chile: La Ciencia, Los Telescopios, y Los Cielos Oscuros

- Welcome to Chile!
 - Extremes: from glaciers to the driest desert
 - A modern country with stable
 government and solid infrastructure

CONTEXT: Astronomy Operations in Chile

- AURA-O
 - CTIO (4m + smaller telescopes)
 - SOAR (4.2-m)
 - Gemini (8m)
 - LSST (8.4m)
- European Southern Observatory
 - La Silla (3.6m + 3.5m + 2.2m + ...)
 - Paranal (4 x 8m VLT + VISTA 4m + VST 2.4m
- Carnegie Observatories
 - Las Campanas Observatory (2.5m + 1m + …)
 - Magellan (2 x 6.5m)
- ALMA (= ESO + AUI + Japan)
 - ~64 12m radio telescopes
- GSMT

- GMT (Las Campanas), E-ELT (Armazones?)

What is "AURA"

- AURA = Association of Universities for Research in Astronomy
 - A consortium of universities established in 1957 to manage public observatories
 - Membership currently includes 37 U.S. institutions and 7 international institutions (including 2 Chilean)

What is "AURA"?

- AURA currently manages many major public international astronomical facilities
 - National Optical Astronomy Observatory (NOAO)
 - Kitt Peak National Observatory
 - Cerro Tololo Inter-American Observatory
 - SOAR Telescope
 - National Solar Observatory (NSO)
 - Space Telescope Science Institute (STScI)
 - Gemini Observatory
 - Gemini-North & Gemini-South
 - Large Synoptic Survey Telescope (LSST)

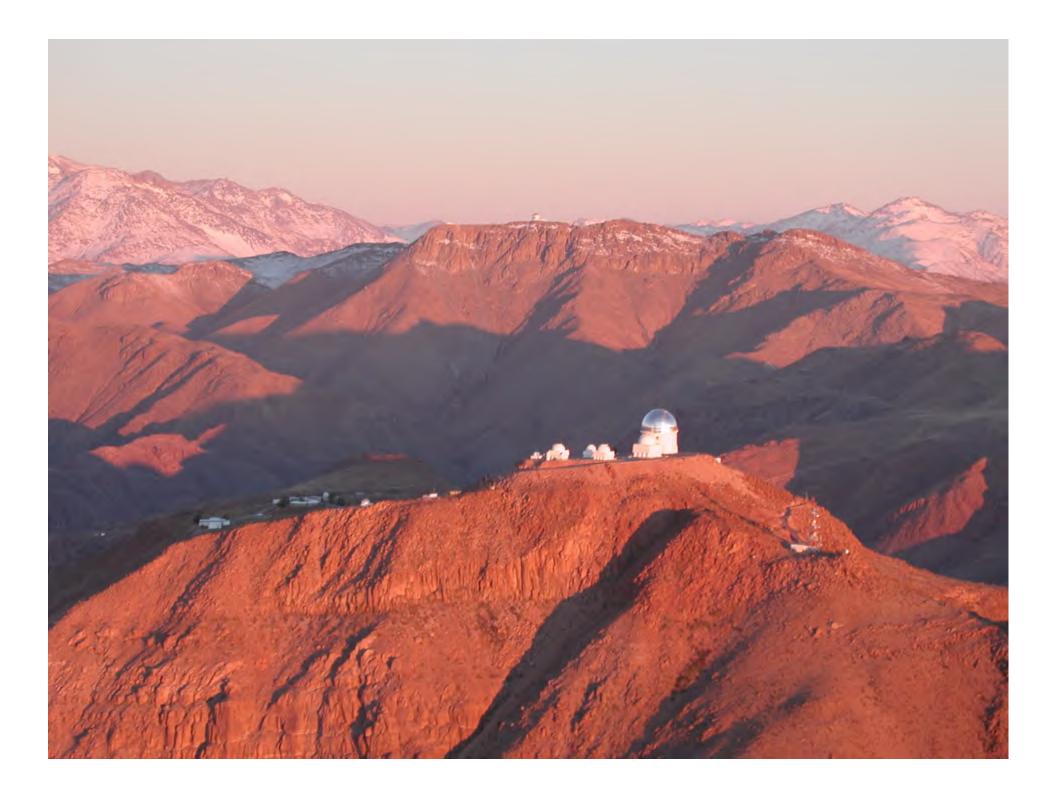
AURA Observatory in Chile

- AURA came to Chile in 1960
 - Following up on an invitation from Prof. Federico Rutlant, Director of the Observatorio Nacional de Chile
 - In collaboration with the ON/UChile, AURA managed site survey work to establish the first large international observatory in Chile

AURA Introduction 2014

AURA Observatory in Chile

- In November 1962
 - Selected the site, Cerro Tololo


Cerro Tololo Inter-American Observatory

AURA Introduction 2014

Immediate Environment

AURA "Estancia"

- AURA-owned, purchased 1962
 - >90,000 acres
 - Access actively controlled at the gate house
 - Some native flora & fauna protected; no environ. issues
- Infrastructure
 - ~45km of well-maintained dirt road to mountaintops
 - With emergency phones & guardrails
 - A well in valley provides water, pumped up to Tololo, trucked over to Pachón
 - Power lines from paved road to mountaintops
 - Wholly owned & operated microwave link to La Serena

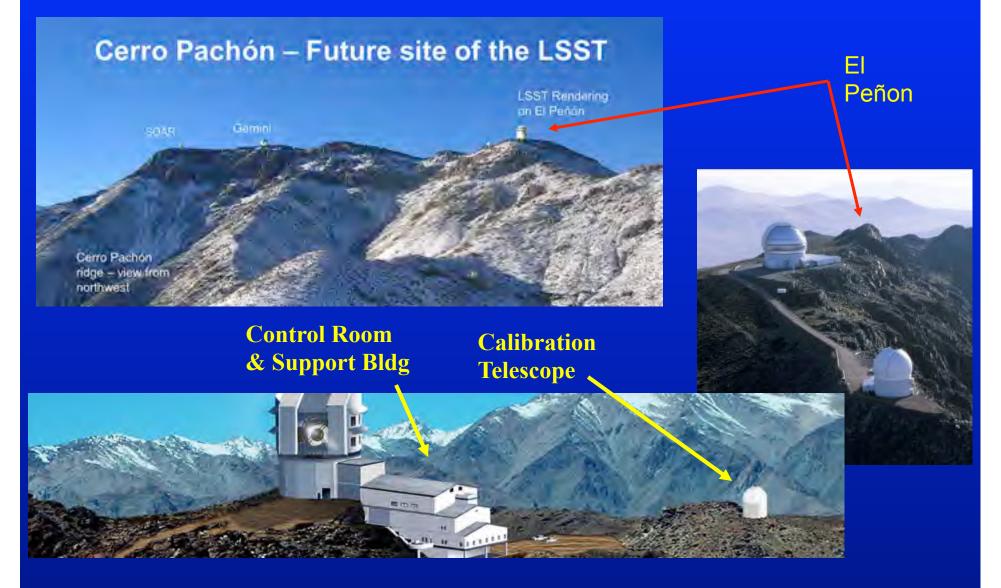
• 17 telescopes

- 3 dormitories (+Dining Hall)
- 5 houses
- Warehouses
- Power station
- Water station
- Garage

- "Las Tacas": Offices, Elec. Labs, Machine Shop
- The hub is the "Round Office Building" (ROB)
 With admin offices, library, clinic, and meeting room

Cerro Tololo

Cerro Tololo Aerial View (Year 2001)



- 2 telescopes, Dining Hall, 2 Dormitories
 - Clinic in one of the dorm rooms
- Planned expansion of dorm
 - More dorm rooms, offices, & new kitchen/dining facility

May 2006: LSST Site Selected

Immediate Environment

La Serena

AURA Recinto

Telescopes of AURA Observatory

Cerro Tololo Inter-American Observatory

- Southern branch of the National Optical Astronomy Observatory (NOAO)
 - With CTIO+KPNO, since ~1965 we have provided access to the whole sky to astronomers from all over the world with a "open skies" policy

URA Introduction 201

20

Gemini-South 8m

- Among the largest telescopes in the world
- Probing the most distant objects in the universe
- Probing nearby stars for planets with specialized instruments
- Most observing in QUEUE mode

SOAR 4.1m

- SOAR: SOuthern Astrophysical Research telescope
- Consortium with Brazil, UNC, MSU, & NOAO
- Large Instrument Payload
 - Up to 9 active instruments
 - Rapid switching between instruments
- Remote Observing

Cerro Tololo Small Telescopes

AURA Introduction 2014

Other Activities

ATMOSPHERIC STUDIES

- DGAC (Chilean FAA)
 - Ozone monitoring, Weather Station
- Andes Lidar Observatory (ALO)
- SSI Airglow
- Univ. British Columbia Site testing

GEOLOGIC

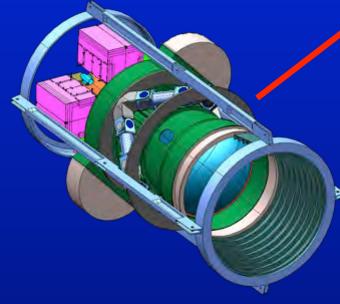
IRIS/Uchile Seismological station

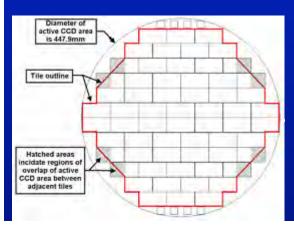
Tools of the FUTURE

Selected Examples:

Coming soon to nearby mountaintops...

New Instruments (DECam)

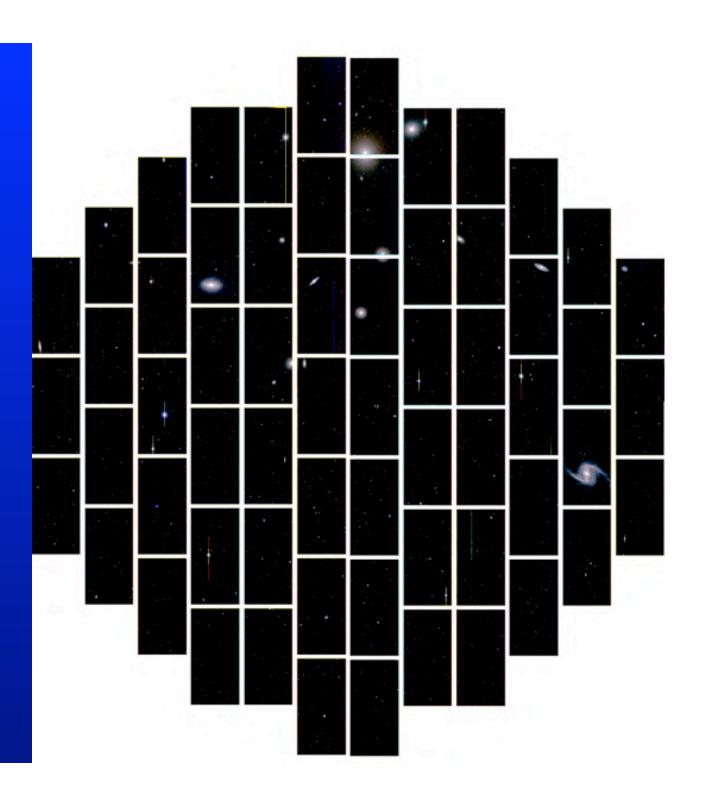

New Telescopes (LSST)



Dark Energy Camera

CAMERA:

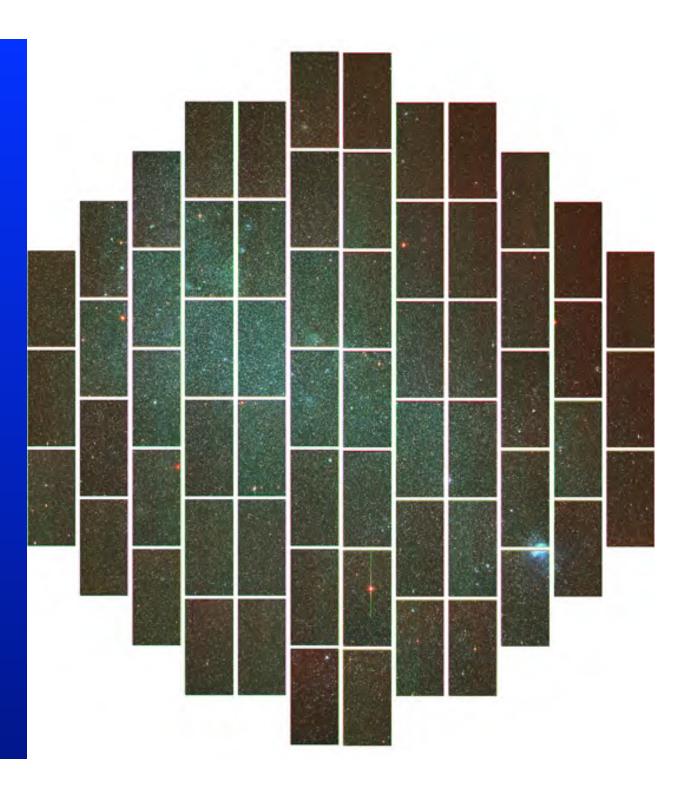
- 62 2048 x 4096 pixel CCDs
- 570 Megapixel camera
- The largest focal plane for astronomy in S. Hemisphere


A "modest" data challenge

- Each image 1GB; 300–500 GB of raw data/night
 - Data must be moved from Chile to NCSA before next night begins (<18 hours), preferably in real time
 - Data must be processed within <24 hours to inform next night's observing: using TERAGRID resources
- TOTAL Dataset 1 to 5 PB; w/ public access
 Raw Images + Processed images + Catalogs

First light images: September 12, 2012

 Fornax galaxy cluster



AURA Introduction 2014

Small Magellanic Cloud

 ~5 billion measurable stars in this single image!

New Techniques: Las Cumbres Observatory Global Telescope Network

- Privately funded network of nearly identical telescopes distributed worldwide (>6 sites)
- Mission: Mix of Science & Education
- Planned facilities:
 - 0.4m-s: mostly educational
 - 1m-s: mostly science, mostly photometry
 - 2m-s: mostly science, photometry+spectroscopy

Layout for LCOGTN at CTIO

The next step...

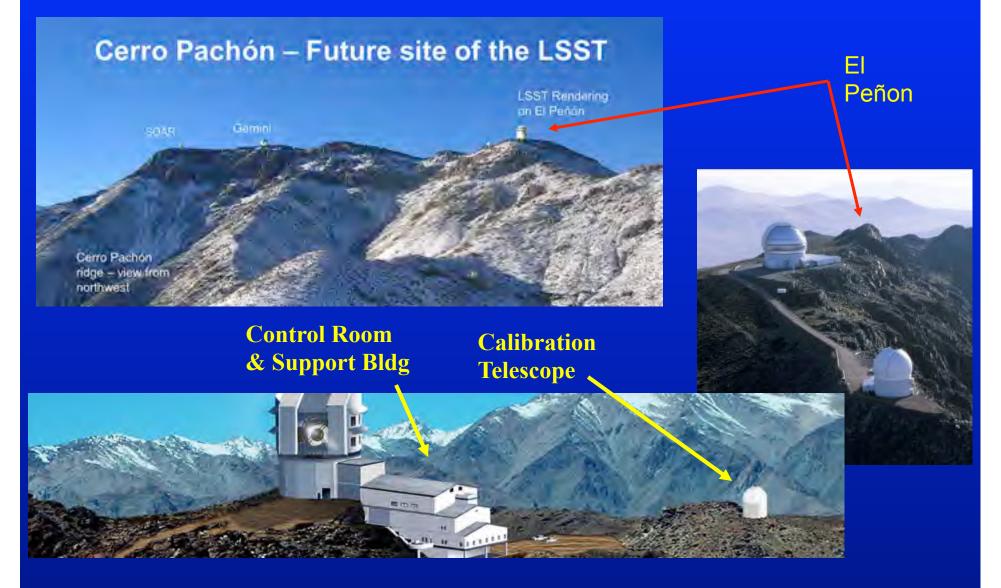
AURA Introduction 2014

The Large Synoptic Survey Telescope -Massively Parallel Astrophysics

Survey the entire sky every 3-4 nights, to simultaneously detect and study:

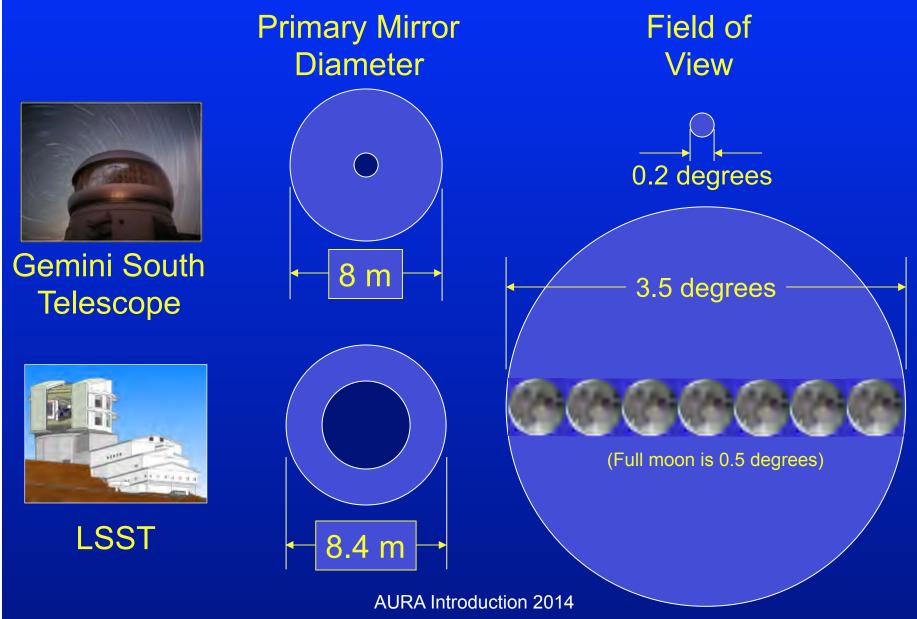
- Dark Matter via Weak gravitational lensing
- Dark Energy via thousands of SNe per year
- Potentially hazardous near earth asteroids
- Tracers of the formation of the solar system
- Fireworks in the heavens GRBs, quasars...
- Periodic and transient phenomena
-the unknown

LSST: creating a "digital universe"


LSST is designed to image the whole sky every few nights for 10 years, giving us a movie-like window into our dynamic UniverseurA Introduction 2014

8.4 M Telescope

- 3.5 Degree Field Of View
- Telescope Located in Chile on Cerro Pachón
- 3.2 Billion Pixel Camera
- ~40 Second Cadence
 - Two 15 second exposures
 - Full sky coverage every few nights
- Advanced Data Management Systems
- Public Data
 - Alerts of new events
 - Catalogs of object
 - Archives of images



May 2006: LSST Site Selected

Why is the LSST so unique?

Telescope and Site

30 m diameter dome

1.2 m diameter atmospheric telescope

Control room and heat producing equipment (lower level)

1,380 m² service and maintenance facility

Base Facility

350 ton telescope —

Project includes the facilities, and hardware to collect the light, control the survey, calibrate conditions, and support all LSST summit and base operations

AURA Introduction 2014

Camera

- 3.2 Gigapixel science array 63 cm diameter
- Wavefront and guide sensors
- 2 second readout
- 5 filters in camera

1.65 m

(5'-5")

• Electronics

Utility Trunk—houses support electronics and utilities

Cryostat—contains focal plane & its electronics

Focal plane

L3 Lens

Filter

L2 Lens

AURA Introduction 2014

L1 Lens

Petascale Data Management

- Each image roughly 6 GB
- Cadence: ~1 image every 20s
- 15 to 18 TB per night, 30TB "reduced"!
 - ALL must be transferred to NCSA "archive center"
 - within image timescale (17s, hopefully <3s), >>10 Gbps
- REAL TIME processing, analysis, & alerts
 - Send out alerts of transient sources within 60s
 - ~2 million events per night every night for 10 years
 - Provide automatic data quality evaluation, alert to problems
 - Change survey observing strategy on the fly based on conditions, last field visited, etc.

LSST: Era of "Data Science"

TRANSIENT SCIENCE (Data Stream)

- >3 Terabytes per hour (reduced) that must be mined in real time for alerts.
- 20 billion objects will be monitored for important variations in real time.

~2 million events per night every night for 10 years
New approaches must be developed for knowledge extraction in real time

NON-TRANSIENT SCIENCE

 >10¹⁰ objects in a 20 PB final database catalog, backed by a 100 PB final image archive
 New approaches to data mining needed to sift through data to identify samples, or individual objects, of interest

Data Management Sites and Centers

LSST Data Management: Baseline Solutions

- High-speed connectivity
 - Mountain to Base: >100 Gbps
 - Base to Archive: >10 Gbps (hopefully 100Gbps)
 - Archive to User: variable, UI challenge
- Supercomputer processing & storage
 - Based in La Serena & NCSA
 - 100 PB final image archive
 - Distributed (Grid) analysis facilities
 - Integrated into "Chilean Grid": REUNA+NLHPC+
- Petascale DB (~100 PB final catalog)
 - Based on open source RDBMS (mysql)

Strategic Partnerships

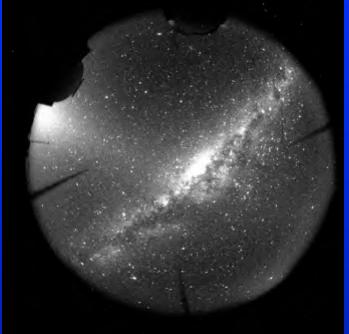
- Connectivity
 - High-speed national bandwidth (REUNA)
 - and international bandwidth (AmLight/RNP/CLARA)
 - Others: South American Astronomy Coordination Cmte
- Distributed Computing Systems
 - Supercomputer center(s) to provide bulk storage, large scale processing (e.g., NCSA, NLHPC in Chile)
 - Grid processing, storage
- Scientific Analysis Challenges: Data Mining & Astro-Informatics or Astro-Statistics
 - Statistical analyses of large samples
 - Separating small signals from systematic effects
 - Automatically finding unique objects: one in billions

AURA Introduction 2014

SECOND LA SERENA SCHOOL FOR DATA SCIENCE 2014 Applied Tools for Astronomy August 2014

AURA Campus La Serena - Chile

- Training the next generation of scientists (in fields of astronomy, mathematics, computer science, and others) in the tools and techniques of massive data
- International program: funding available for students from Chile and the U.S.A.; registration and applications for funding due in March
- Target students: senior undergraduates and beginning graduate students
- Program includes: Lectures, Hands-on activities, and Group Projects


For more information, visit:

http://www.aura-o.aura-astronomy.org/winter_school/

Site Quality Preservation

- Tololo & Pachon are extremely dark sites.
 - See www.ctio.noao.edu/site/pachon_sky
- But the population is growing
 - Particularly in La Serena-Coquimbo,
 - and extending up the valley
- Ongoing change to improved lighting
 - "Norma" regulates lighting fixtures
 - Mining activities need monitoring

- OPCC (Oficina de Protección de la Calidad de Cielo) of "CONAMA"
 - supported by the international observatories. Staff of 1(!)
 - Director: Pedro Sanhueza
 - Plus some scientific and technical assistance from CTIO & Gemini staff.
- "Sky preservation" is also an important part of our EPO message.
- Active at the national and international level (IDA, IAU, IYA etc).

AURA

1999 →

- 2007 →
- First efforts involved light fixture (limit upward directed light)
- Current efforts involve lights themselves (high-pressure sodium)
- Future efforts focus on light levels, and changing "norma" to "law"!
- Most recent measurements show
 - Still NO measurable effect near zenith
 - Significant effect toward La Serena/Coquimbo at 70-80 deg zenith angles; need to continue recently begun quantitative measurements

Chilean Commitment to Dark Skies

REPÚBLICA DE CHILE MINISTERIO DEL MEDIO AMBIENTE

AURA Observatory in Chile: A platform for current and future **U.S. and International** astronomical facilities in Chile

The Exd Beginning!

